skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jirandehi, Arash_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A reliable approach based on an entropy-damage model for assessing remaining useful fatigue life is presented. Two damage models are presented and evaluated to assess their effectiveness in predicting remaining useful life. The first model focuses on reduced toughness caused by fatigue degradation, while the second is based on accumulating entropy during fatigue loading. The entropy-based approach employs infrared thermography to anticipate entropy accumulation and damage status. Outcomes reveal that the entropy-driven technique offers enhanced precision. Moreover, its damage growth rate remains consistent, regardless of the number of cycles leading to failure, ensuring a more stable tracking of damage evolution. It successfully predicts the remaining useful life and can treat variable load sequencing without knowing the loading history. An extensive set of experimental results with carbon steel 1018 are presented to illustrate the utility of the approach. 
    more » « less